If it's not what You are looking for type in the equation solver your own equation and let us solve it.
99a^2+55a=0
a = 99; b = 55; c = 0;
Δ = b2-4ac
Δ = 552-4·99·0
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-55}{2*99}=\frac{-110}{198} =-5/9 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+55}{2*99}=\frac{0}{198} =0 $
| |2x+15|=37 | | 63z^2+61z+6=0 | | (x)(2x)=900 | | -5n=12 | | v=722 | | 10k=9k | | -4w-3=-3w | | I=8k+28 | | 3x+3=2(+7) | | 2(3x+4)=3(3x+-5)+4x | | 4-3x=-6x+13 | | 5/2(6w-16)=18-(3w+40 | | 7x-4=135x-2=19 | | -2x+10-x=989 | | 0=¹/³x+4 | | -6-8t=-9t-10 | | X+7g=9 | | 6x-32=-20 | | 31-4x=15+12x | | x+1=−(x+3) | | 6x+30=4x-70 | | -f+2=6 | | 17=a-9 | | 9=19+5w | | 16z+18=-14 | | 20=16+2c | | -8a-20=12 | | 20=v/1+14 | | 0.01x^2+.30x-97.75=0 | | -1/3(20x-6)=13 | | (x^2)-4x+96=0 | | 20+19p=1 |